Tooney
Well-Known Member
- Joined
- Aug 14, 2021
- Threads
- 217
- Messages
- 945
- Reaction score
- 270
- Location
- Ohio
- Vehicles
- 2022 Taycan 4S

- Thread starter
- #1
Range, charging power, and cost: the traction battery remains the most important component in the electric car. The progress is noticeable in the current models, but further improvements in the coming years are vital. What is already happening on the road and not just in the lab?
The battery revolution has yet to happen: Upon closer inspection, success stories from battery research are mostly just inflated partial results that are supposed to attract new funds for the respective institute. The number of miracle believers expecting a drastic innovation in cell chemistry is shrinking.
On the other hand, traction batteries’ properties in electric cars are continuously improving. Evolution instead of revolution – that is the reality of traction batteries. Most of the time, there is an increase in range, but the charging speed often goes up as well. Everything is heading in the right direction, yet some questions remain unanswered.
A battery system in which many individual cells form a working collective is supposed to be able to do everything: It should store a lot of electrical energy, preferably in a small space (volumetric energy density) and with little weight (gravimetric energy density). Safety must also be as high as possible in a crash and the risk of thermal runaway as low as possible. And especially in vehicle segments from the compact class downwards, cost is a key issue. It’s all about money – as always.
Our overview of the five most important trends:
5. The C-rate is rising
The C-rate is the benchmark on every auto industry chart of battery development. 1C means that charging from 0 to 100 per cent takes one hour. Translated for ten to 80 per cent (which is what is most often quoted), 1C is thus 42 minutes.
The C rate is used to compare the charging speed of traction batteries with different energy contents. The maximum charging rate, on the other hand, is a single value that certainly allows conclusions to be drawn, but is not meaningful enough for practical use.
https://www.electrive.com/2023/08/1...acles-the-five-most-important-battery-trends/
The battery revolution has yet to happen: Upon closer inspection, success stories from battery research are mostly just inflated partial results that are supposed to attract new funds for the respective institute. The number of miracle believers expecting a drastic innovation in cell chemistry is shrinking.
On the other hand, traction batteries’ properties in electric cars are continuously improving. Evolution instead of revolution – that is the reality of traction batteries. Most of the time, there is an increase in range, but the charging speed often goes up as well. Everything is heading in the right direction, yet some questions remain unanswered.
A battery system in which many individual cells form a working collective is supposed to be able to do everything: It should store a lot of electrical energy, preferably in a small space (volumetric energy density) and with little weight (gravimetric energy density). Safety must also be as high as possible in a crash and the risk of thermal runaway as low as possible. And especially in vehicle segments from the compact class downwards, cost is a key issue. It’s all about money – as always.
Our overview of the five most important trends:
5. The C-rate is rising
The C-rate is the benchmark on every auto industry chart of battery development. 1C means that charging from 0 to 100 per cent takes one hour. Translated for ten to 80 per cent (which is what is most often quoted), 1C is thus 42 minutes.
The C rate is used to compare the charging speed of traction batteries with different energy contents. The maximum charging rate, on the other hand, is a single value that certainly allows conclusions to be drawn, but is not meaningful enough for practical use.
https://www.electrive.com/2023/08/1...acles-the-five-most-important-battery-trends/